TPC-H 测试

棠羽

2023/04/12

20 min

本文将引导您对 PolarDB for PostgreSQL 进行 TPC-H 测试。

背景

TPC-Hopen in new window 是专门测试数据库分析型场景性能的数据集。

测试准备

部署 PolarDB-PG

使用 Docker 快速拉起一个单机的 PolarDB for PostgreSQL 集群:

docker pull polardb/polardb_pg_local_instance:11
docker run -it \
    --cap-add=SYS_PTRACE \
    --privileged=true \
    --name polardb_pg_htap \
    --shm-size=512m \
    polardb/polardb_pg_local_instance:11 \
    bash
docker pull registry.cn-hangzhou.aliyuncs.com/polardb_pg/polardb_pg_local_instance:11
docker run -it \
    --cap-add=SYS_PTRACE \
    --privileged=true \
    --name polardb_pg_htap \
    --shm-size=512m \
    registry.cn-hangzhou.aliyuncs.com/polardb_pg/polardb_pg_local_instance:11 \
    bash

或者参考 进阶部署 部署一个基于共享存储的 PolarDB for PostgreSQL 集群。

生成 TPC-H 测试数据集

通过 tpch-dbgenopen in new window 工具来生成测试数据。

$ git clone https://github.com/ApsaraDB/tpch-dbgen.git
$ cd tpch-dbgen
$ ./build.sh --help

  1) Use default configuration to build
  ./build.sh
  2) Use limited configuration to build
  ./build.sh --user=postgres --db=postgres --host=localhost --port=5432 --scale=1
  3) Run the test case
  ./build.sh --run
  4) Run the target test case
  ./build.sh --run=3. run the 3rd case.
  5) Run the target test case with option
  ./build.sh --run --option="set polar_enable_px = on;"
  6) Clean the test data. This step will drop the database or tables, remove csv
  and tbl files
  ./build.sh --clean
  7) Quick build TPC-H with 100MB scale of data
  ./build.sh --scale=0.1

通过设置不同的参数,可以定制化地创建不同规模的 TPC-H 数据集。build.sh 脚本中各个参数的含义如下:

  • --user:数据库用户名
  • --db:数据库名
  • --host:数据库主机地址
  • --port:数据库服务端口
  • --run:执行所有 TPC-H 查询,或执行某条特定的 TPC-H 查询
  • --option:额外指定 GUC 参数
  • --scale:生成 TPC-H 数据集的规模,单位为 GB

该脚本没有提供输入数据库密码的参数,需要通过设置 PGPASSWORD 为数据库用户的数据库密码来完成认证:

export PGPASSWORD=<your password>

生成并导入 100MB 规模的 TPC-H 数据:

./build.sh --scale=0.1

生成并导入 1GB 规模的 TPC-H 数据:

./build.sh

执行 PostgreSQL 单机并行执行

以 TPC-H 的 Q18 为例,执行 PostgreSQL 的单机并行查询,并观测查询速度。

tpch-dbgen/ 目录下通过 psql 连接到数据库:

cd tpch-dbgen
psql
-- 打开计时
\timing on

-- 设置单机并行度
SET max_parallel_workers_per_gather = 2;

-- 查看 Q18 的执行计划
\i finals/18.explain.sql
                                                                         QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------------------
 Sort  (cost=3450834.75..3450835.42 rows=268 width=81)
   Sort Key: orders.o_totalprice DESC, orders.o_orderdate
   ->  GroupAggregate  (cost=3450817.91..3450823.94 rows=268 width=81)
         Group Key: customer.c_custkey, orders.o_orderkey
         ->  Sort  (cost=3450817.91..3450818.58 rows=268 width=67)
               Sort Key: customer.c_custkey, orders.o_orderkey
               ->  Hash Join  (cost=1501454.20..3450807.10 rows=268 width=67)
                     Hash Cond: (lineitem.l_orderkey = orders.o_orderkey)
                     ->  Seq Scan on lineitem  (cost=0.00..1724402.52 rows=59986052 width=22)
                     ->  Hash  (cost=1501453.37..1501453.37 rows=67 width=53)
                           ->  Nested Loop  (cost=1500465.85..1501453.37 rows=67 width=53)
                                 ->  Nested Loop  (cost=1500465.43..1501084.65 rows=67 width=34)
                                       ->  Finalize GroupAggregate  (cost=1500464.99..1500517.66 rows=67 width=4)
                                             Group Key: lineitem_1.l_orderkey
                                             Filter: (sum(lineitem_1.l_quantity) > '314'::numeric)
                                             ->  Gather Merge  (cost=1500464.99..1500511.66 rows=400 width=36)
                                                   Workers Planned: 2
                                                   ->  Sort  (cost=1499464.97..1499465.47 rows=200 width=36)
                                                         Sort Key: lineitem_1.l_orderkey
                                                         ->  Partial HashAggregate  (cost=1499454.82..1499457.32 rows=200 width=36)
                                                               Group Key: lineitem_1.l_orderkey
                                                               ->  Parallel Seq Scan on lineitem lineitem_1  (cost=0.00..1374483.88 rows=24994188 width=22)
                                       ->  Index Scan using orders_pkey on orders  (cost=0.43..8.45 rows=1 width=30)
                                             Index Cond: (o_orderkey = lineitem_1.l_orderkey)
                                 ->  Index Scan using customer_pkey on customer  (cost=0.43..5.50 rows=1 width=23)
                                       Index Cond: (c_custkey = orders.o_custkey)
(26 rows)

Time: 3.965 ms

-- 执行 Q18
\i finals/18.sql
       c_name       | c_custkey | o_orderkey | o_orderdate | o_totalprice |  sum
--------------------+-----------+------------+-------------+--------------+--------
 Customer#001287812 |   1287812 |   42290181 | 1997-11-26  |    558289.17 | 318.00
 Customer#001172513 |   1172513 |   36667107 | 1997-06-06  |    550142.18 | 322.00
 ...
 Customer#001288183 |   1288183 |   48943904 | 1996-07-22  |    398081.59 | 325.00
 Customer#000114613 |    114613 |   59930883 | 1997-05-17  |    394335.49 | 319.00
(84 rows)

Time: 80150.449 ms (01:20.150)

执行 ePQ 单机并行执行

PolarDB for PostgreSQL 提供了弹性跨机并行查询(ePQ)的能力,非常适合进行分析型查询。下面的步骤将引导您可以在一台主机上使用 ePQ 并行执行 TPC-H 查询。

tpch-dbgen/ 目录下通过 psql 连接到数据库:

cd tpch-dbgen
psql

首先需要对 TPC-H 产生的八张表设置 ePQ 的最大查询并行度:

ALTER TABLE nation SET (px_workers = 100);
ALTER TABLE region SET (px_workers = 100);
ALTER TABLE supplier SET (px_workers = 100);
ALTER TABLE part SET (px_workers = 100);
ALTER TABLE partsupp SET (px_workers = 100);
ALTER TABLE customer SET (px_workers = 100);
ALTER TABLE orders SET (px_workers = 100);
ALTER TABLE lineitem SET (px_workers = 100);

以 Q18 为例,执行查询:

-- 打开计时
\timing on

-- 打开 ePQ 功能的开关
SET polar_enable_px = ON;
-- 设置每个节点的 ePQ 并行度为 1
SET polar_px_dop_per_node = 1;

-- 查看 Q18 的执行计划
\i finals/18.explain.sql
                                                                          QUERY PLAN
---------------------------------------------------------------------------------------------------------------------------------------------------------------
 PX Coordinator 2:1  (slice1; segments: 2)  (cost=0.00..257526.21 rows=59986052 width=47)
   Merge Key: orders.o_totalprice, orders.o_orderdate
   ->  GroupAggregate  (cost=0.00..243457.68 rows=29993026 width=47)
         Group Key: orders.o_totalprice, orders.o_orderdate, customer.c_name, customer.c_custkey, orders.o_orderkey
         ->  Sort  (cost=0.00..241257.18 rows=29993026 width=47)
               Sort Key: orders.o_totalprice DESC, orders.o_orderdate, customer.c_name, customer.c_custkey, orders.o_orderkey
               ->  Hash Join  (cost=0.00..42729.99 rows=29993026 width=47)
                     Hash Cond: (orders.o_orderkey = lineitem_1.l_orderkey)
                     ->  PX Hash 2:2  (slice2; segments: 2)  (cost=0.00..15959.71 rows=7500000 width=39)
                           Hash Key: orders.o_orderkey
                           ->  Hash Join  (cost=0.00..15044.19 rows=7500000 width=39)
                                 Hash Cond: (orders.o_custkey = customer.c_custkey)
                                 ->  PX Hash 2:2  (slice3; segments: 2)  (cost=0.00..11561.51 rows=7500000 width=20)
                                       Hash Key: orders.o_custkey
                                       ->  Hash Semi Join  (cost=0.00..11092.01 rows=7500000 width=20)
                                             Hash Cond: (orders.o_orderkey = lineitem.l_orderkey)
                                             ->  Partial Seq Scan on orders  (cost=0.00..1132.25 rows=7500000 width=20)
                                             ->  Hash  (cost=7760.84..7760.84 rows=400 width=4)
                                                   ->  PX Broadcast 2:2  (slice4; segments: 2)  (cost=0.00..7760.84 rows=400 width=4)
                                                         ->  Result  (cost=0.00..7760.80 rows=200 width=4)
                                                               Filter: ((sum(lineitem.l_quantity)) > '314'::numeric)
                                                               ->  Finalize HashAggregate  (cost=0.00..7760.78 rows=500 width=12)
                                                                     Group Key: lineitem.l_orderkey
                                                                     ->  PX Hash 2:2  (slice5; segments: 2)  (cost=0.00..7760.72 rows=500 width=12)
                                                                           Hash Key: lineitem.l_orderkey
                                                                           ->  Partial HashAggregate  (cost=0.00..7760.70 rows=500 width=12)
                                                                                 Group Key: lineitem.l_orderkey
                                                                                 ->  Partial Seq Scan on lineitem  (cost=0.00..3350.82 rows=29993026 width=12)
                                 ->  Hash  (cost=597.51..597.51 rows=749979 width=23)
                                       ->  PX Hash 2:2  (slice6; segments: 2)  (cost=0.00..597.51 rows=749979 width=23)
                                             Hash Key: customer.c_custkey
                                             ->  Partial Seq Scan on customer  (cost=0.00..511.44 rows=749979 width=23)
                     ->  Hash  (cost=5146.80..5146.80 rows=29993026 width=12)
                           ->  PX Hash 2:2  (slice7; segments: 2)  (cost=0.00..5146.80 rows=29993026 width=12)
                                 Hash Key: lineitem_1.l_orderkey
                                 ->  Partial Seq Scan on lineitem lineitem_1  (cost=0.00..3350.82 rows=29993026 width=12)
 Optimizer: PolarDB PX Optimizer
(37 rows)

Time: 216.672 ms

-- 执行 Q18
       c_name       | c_custkey | o_orderkey | o_orderdate | o_totalprice |  sum
--------------------+-----------+------------+-------------+--------------+--------
 Customer#001287812 |   1287812 |   42290181 | 1997-11-26  |    558289.17 | 318.00
 Customer#001172513 |   1172513 |   36667107 | 1997-06-06  |    550142.18 | 322.00
 ...
 Customer#001288183 |   1288183 |   48943904 | 1996-07-22  |    398081.59 | 325.00
 Customer#000114613 |    114613 |   59930883 | 1997-05-17  |    394335.49 | 319.00
(84 rows)

Time: 59113.965 ms (00:59.114)

可以看到比 PostgreSQL 的单机并行执行的时间略短。加大 ePQ 功能的节点并行度,查询性能将会有更明显的提升:

SET polar_px_dop_per_node = 2;
\i finals/18.sql
       c_name       | c_custkey | o_orderkey | o_orderdate | o_totalprice |  sum
--------------------+-----------+------------+-------------+--------------+--------
 Customer#001287812 |   1287812 |   42290181 | 1997-11-26  |    558289.17 | 318.00
 Customer#001172513 |   1172513 |   36667107 | 1997-06-06  |    550142.18 | 322.00
 ...
 Customer#001288183 |   1288183 |   48943904 | 1996-07-22  |    398081.59 | 325.00
 Customer#000114613 |    114613 |   59930883 | 1997-05-17  |    394335.49 | 319.00
(84 rows)

Time: 42400.500 ms (00:42.401)

SET polar_px_dop_per_node = 4;
\i finals/18.sql

       c_name       | c_custkey | o_orderkey | o_orderdate | o_totalprice |  sum
--------------------+-----------+------------+-------------+--------------+--------
 Customer#001287812 |   1287812 |   42290181 | 1997-11-26  |    558289.17 | 318.00
 Customer#001172513 |   1172513 |   36667107 | 1997-06-06  |    550142.18 | 322.00
 ...
 Customer#001288183 |   1288183 |   48943904 | 1996-07-22  |    398081.59 | 325.00
 Customer#000114613 |    114613 |   59930883 | 1997-05-17  |    394335.49 | 319.00
(84 rows)

Time: 19892.603 ms (00:19.893)

SET polar_px_dop_per_node = 8;
\i finals/18.sql
       c_name       | c_custkey | o_orderkey | o_orderdate | o_totalprice |  sum
--------------------+-----------+------------+-------------+--------------+--------
 Customer#001287812 |   1287812 |   42290181 | 1997-11-26  |    558289.17 | 318.00
 Customer#001172513 |   1172513 |   36667107 | 1997-06-06  |    550142.18 | 322.00
 ...
 Customer#001288183 |   1288183 |   48943904 | 1996-07-22  |    398081.59 | 325.00
 Customer#000114613 |    114613 |   59930883 | 1997-05-17  |    394335.49 | 319.00
(84 rows)

Time: 10944.402 ms (00:10.944)

使用 ePQ 执行 Q17 和 Q18 时可能会出现 OOM。需要设置以下参数防止用尽内存:

SET polar_px_optimizer_enable_hashagg = 0;

执行 ePQ 跨机并行执行

在上面的例子中,出于简单考虑,PolarDB for PostgreSQL 的多个计算节点被部署在同一台主机上。在这种场景下使用 ePQ 时,由于所有的计算节点都使用了同一台主机的 CPU、内存、I/O 带宽,因此本质上是基于单台主机的并行执行。实际上,PolarDB for PostgreSQL 的计算节点可以被部署在能够共享存储节点的多台机器上。此时使用 ePQ 功能将进行真正的跨机器分布式并行查询,能够充分利用多台机器上的计算资源。

参考 进阶部署 可以搭建起不同形态的 PolarDB for PostgreSQL 集群。集群搭建成功后,使用 ePQ 的方式与单机 ePQ 完全相同。

如果遇到如下错误:

psql:queries/q01.analyze.sq1:24: WARNING:  interconnect may encountered a network error, please check your network
DETAIL:  Failed to send packet (seq 1) to 192.168.1.8:57871 (pid 17766 cid 0) after 100 retries.

可以尝试统一修改每台机器的 MTU 为 9000:

ifconfig <网卡名> mtu 9000